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ABSTRACT: Arginases catalyze the divalent cation-depend-
ent hydrolysis of L-arginine to urea and L-ornithine. There is
significant interest in using arginase as a therapeutic anti-
neogenic agent against L-arginine auxotrophic tumors and in
enzyme replacement therapy for treating hyperargininemia.
Both therapeutic applications require enzymes with sufficient
stability under physiological conditions. To explore sequence
elements that contribute to arginase stability we used
SCHEMA-guided recombination to design a library of
chimeric enzymes composed of sequence fragments from the
two human isozymes Arginase I and II. We then developed a
novel active learning algorithm that selects sequences from this

Highly informative sampling
of the arginase landscape

library that are both highly informative and functional. Using high-throughput gene synthesis and our two-step active learning
algorithm, we were able to rapidly create a small but highly informative set of seven enzymatically active chimeras that had an
average variant distance of 40 mutations from the closest parent arginase. Within this set of sequences, linear regression was used
to identify the sequence elements that contribute to the long-term stability of human arginase under physiological conditions.
This approach revealed a striking correlation between the isoelectric point and the long-term stability of the enzyme to

deactivation under physiological conditions.
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Humans produce two arginase isozymes (EC 3.5.3.1) that
catalyze the hydrolysis of L-arginine (L-Arg) to urea and
L-ornithine (L-Orn). The Arginase I (hArgl) gene is located on
chromosome 6 (6q.23), is highly expressed in the cytosol of
hepatocytes, and functions in nitrogen removal as the final step
of the urea cycle. The Arginase II (hArg II) gene is found on
chromosome 14 (14q.24.1). Arginase II is localized in the
mitochondria in tissues such as kidney, brain, and skeletal
muscle, where it is thought to provide a supply of L-ornithine
(1-Orn) for i-proline and polyamine biosynthesis." The two
enzymes share 61% amino acid sequence identity and adopt a
homotrimeric structure composed of an @/ fold consisting of a
parallel eight-stranded f-sheet surrounded by several helices.
These enzymes contain a dinuclear metal cluster that generates
a hydroxide for nucleophilic attack on the guanidinium carbon
of L-arginine.”® In eukaryotes and the vast majority of
prokaryotes, the native metal cofactor in arginase is believed
to be Mn**.

There is significant interest in applying arginases as cancer

chemotherapeutic agents. A number of high morbidity tumors
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such as hepatocellular carcinomas (HCCs), melanomas, renal
cell, and prostate carcinomas*~© are deficient in the urea cycle
enzyme argininosuccinate synthase (ASS) and thus are sensitive
to L-arginine (L-Arg) depletion. Non-malignant cells typically
enter into quiescence (G,) when deprived of L-Arg and remain
viable for several weeks. However, ASS-deficient tumor cells
experience cell cycle defects that lead to the reinitiation of DNA
synthesis even though protein synthesis is inhibited, in turn
resulting in major imbalances that lead to rapid cell death.”®
The selective toxicity of L-Arg depletion for HCC, melanoma,
and other urea-cycle enzyme-deficient cancer cells has been
extensively demonstrated in vitro, in xenograft animal models,
and in clinical trials.*>”®

Additionally, rare autosomal recessive mutations in hArgl can
cause hyperargininemia, which results in hyperammonemia,
spasticity, seizures, and failure to thrive.'° Dietary management
in combination with oral phenylbutyrate is often successful in
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controlling hyperammonemia, but the underlying hyper-
argininemia can persist, which can result in L-arginine-
associated neurotoxicity.'" Red blood cell replacement, which
provides supplemental hArgl within red blood cells, has shown
promise in treating hyperargininemia as evidenced by reduced
serum 1-Arg levels and improved clinical outcomes.'>"?

To function as a therapeutic agent, arginase must efliciently
degrade L-Arg to very low levels (<5 uM) under physiological
conditions (~100 uM Lr-Arg, 37 °C, and pH 7.4).
Unfortunately, hArgl and hArglI display low enzymatic activity
at physiological pH and are rapidly inactivated in serum, with
half-lives of only a few hours. Arnold and co-workers have
demonstrated the utility of SCHEMA-guided recombination for
generating libraries of chimeric proteins between low-homology
sequences.'”’® In an effort to understand the sequence
determinants of arginase that are important for long-term
stability, we designed a SCHEMA-guided recombination library
composed of sequence fragments from the human arginases
hArgl and hArglI (Figure 1). By coupling this SCHEMA library
with a novel active learning algorithm we efliciently identified a
diverse set of enzymatically active chimeric arginases. These
chimeras highlighted an important correlation between iso-
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Figure 1. Overview of method. (A) Starting with the two parent
arginases, we used SCHEMA (structure-guided recombination) to
identify optimal recombination sites. (B) Next, a two-step active
learning algorithm was used to identify a highly informative subset of
this SCHEMA library. The first step of this algorithm efficiently learns
which sequence elements contribute to loss of function. The second
step then uses this information to design a set of chimeras that are
highly informative and functional. (C) With experimental data on
chimeric arginases, regression analysis can be used to make predictions
across the entire library or to understand how each sequence element
contributes to arginase properties.
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electric point and long-term stability, providing a key insight
into how these enzymes might be further optimized for

stability.

B RESULTS AND DISCUSSION
SCHEMA Library Design. When homologous proteins are

recombined, new interactions between structural fragments are
often deleterious to protein function. The presence of these
interactions within a chimeric protein can be estimated from
the SCHEMA disruption, which counts interactions that are
not observed in the parents.'® A chimera’s SCHEMA
disruption is calculated from the parent sequences and a
residue—residue contact map representation of the protein
structure. Large combinatorial libraries of chimeric proteins can
be designed using the Recombination as a Shortest-Path
Problem (RASPP) algorithm, which identifies the library that
minimizes the average SCHEMA disruption with constraints on
the number and size of sequence fragments.'”

hArgl and hArglIl share 61% amino acid sequence identity
(64% nucleotide identity) and were chosen as parents for a
SCHEMA recombination library. The trimeric structure of
hArgll (PDB ID: 1PQ3) was used to prepare the contact map,
which included both intra- and intersubunit contacts. The
RASPP algorithm was used to design a library of chimeric
sequences having seven recombination sites (eight sequence
blocks).

The chimera blocks chosen for the arginase recombination
library are illustrated in Figure 2. Within each monomer’s
central f-sheet, seven of eight strands came from different
blocks, while the trimer interface was formed from blocks S, 6,
and 8. Substrate recognition in arginase is achieved by several
loops that flank the active site and numerous water-mediated
hydrogen bonds."® Within the chimera library, each of these
“specificity” loops was located in different blocks. We believed
these design choices should provide multiple opportunities for
identifying more functional catalysts, especially since the
residues that coordinate the catalytic binuclear manganese
cluster were conserved within the library, while the
surrounding, second-shell residues came from different parental
combinations of blocks 3, 4, 7, and 8.

The sequences within the designed chimera library were
diverse: on average, chimeras differed from one another by 60
mutations (as few as 6 and as many as 120). These chimeras
were also novel: the average mutational distance between a
chimera and a parent arginase was 40.3 mutations. Nonetheless,
on the basis of results from earlier studies'*'® and the average
SCHEMA disruption score for the designed library ((E ) = 16),
it was predicted that approximately half of the chimeras would
be functional arginases.

Rational Generation of an Informative Set of
Chimeras. While the SCHEMA algorithm limits the protein
sequence space that must be explored in order to identify
functional variants, the problem of deciding which proteins to
construct and assay is still a challenging one. For example, in
the current library there were 256 (2%) possible chimeric
arginases, and synthesis and characterization of all these
possibilities would have been daunting. Systematically chosen
chimera sets are more effective than randomly chosen ones,"
but the criterion for selection are very much open to discussion.
Selecting chimeras that equalize the representation of each
parent at each block position will not generate a maximally
informative set of proteins,"> primarily because of the
significant proportion of nonfunctional sequences that provide
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Figure 2. Arginase chimera library block boundaries. (A) Arginase three-dimensional structure with blocks represented by different colors. The
trimer interface is shown as a transparent surface. (B) Contact map displaying residue—residue contacts that could be broken upon recombination.
The colored squares correspond to the block divisions of the library. (C) Secondary structure diagram showing the chimera library block divisions.

no information about functional properties. Such nonfunctional
sequences can be avoided by making single block perturbations,
which better avoid major, disruptive interactions. However,
these one-factor-at-a-time designs closely resemble the wild-
type parents and thus limit the sequence and functional
diversity of the data sets produced.”® To balance these
considerations, we developed a two-step active learning
algorithm that efficiently identifies an informative set of
functional chimeras by first training a model that can predict
if a chimera will form a functional protein and then using this
functional status classifier to guide an experimental design.

The first step of the algorithm involved finding an
informative set of chimeras for a logistic regression classifier
that models the probability that a chimera will form a functional
protein. Here, we quantify the “informativeness” of a set of
chimeras as the mutual information between that set and the
remainder of the library (see Methods). Intuitively, this mutual
information measures how much observing a given set of
chimeras reduces the uncertainty (Shannon entropy) of
prediction for the remainder of the library. On the basis of
these criteria, we initially chose to study a set of eight arginase
chimeras that maximized this mutual information criterion. The
genes encoding these eight chimeras (Table 1, SCHEMA A—
H) were synthesized and expressed (see Methods). As
expected, approximately half (3/8) of the sequences produced
functional arginases. With the functional status of these
sequences now defined, it proved possible to train a Bayesian
logistic regression model to predict the probability of
functioning for all chimeras within the library.

The second step of the algorithm then consisted of finding a
highly informative set of functional chimeric arginases. We used
the predictions from the logistic regression model to select
sequences that maximized the expected value of the mutual
information between the chosen set and the remainder of the
library (see Methods). This criterion should have simulta-
neously identified sequences that were both informative and
had a high probability of being functional. A set of four
additional chimeras was chosen that maximized the expected
value of the mutual information. Significantly, when these gene
sequences were synthesized and expressed, they were all found
to encode functional enzymes that hydrolyzed L-Arg at
significant rates (Table 1, SCHEMA I-L).
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Table 1. Chimeric Arginase Data®

chimera T, Ko/ Koy

name blocks AUC AUCy,, (°C) (mM™'s7h)
hArgl 11111111 2350 5326  81.0 130 + 20
hArgll 22222222 4042 80.6 114 + 18
SCHEMA A® 11112122
SCHEMA B 12122211 3664 2927 812 19+7
SCHEMA C 11221221 3872 5838  68.1 53+ 10
SCHEMA D* 12211212
SCHEMA E* 21121212
SCHEMA F® 21212211
SCHEMA G* 22111221
SCHEMA H 22221111 3089 4109  68.5 31+7
SCHEMA 1 21122121 1654 67.5 27 £ 11
SCHEMA J 11222112 4710 6188  70.7 42+8
SCHEMA K 22121121 1311 2655 789 27 + 10
SCHEMA L 21222111 2828 70.5 19+7
SCHEMA M 12122122 4005 712 45 + 11
SCHEMA N 12222112 3901 70.6 36+5
SCHEMA O 11122222 1026 3108 825 138 + 19
SCHEMA P 21121111 1417 74.3 39+ 10

“SCHEMA A—L are the designed set of highly informative sequences,
SCHEMA M and N are the sequences used to validate the regression
model, and SCHEMA O and P are two additional chimeras that were
generated during this study. ’No protein expression detected.

Overall, the active learning algorithm efficiently identified a
highly informative set of nine functional arginases (two parents
and seven chimeras). Within this set of chimeric sequences,
each parent at each block was typically observed multiple times,
and 103 of the 112 possible sequence block pairs were
observed. Some blocks (such as block 4 parent 1) were under-
represented, presumably because they contributed to loss of
function and were therefore avoided in the second step of the
sequence selection algorithm.

Regression Model for Long-Term Stability. We used
the highly informative set of chimeras to explore sequence—
function relationships within the arginase library. In particular,
the temporal inactivation of all nine enzymes within the
designed set of sequences was measured (see Methods).
Because the chimeras displayed either exponential, sigmodial,
or biphasic decay of activity, for ease of comparison we derived
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each chimera’s normalized area under the inactivation curve
(AUC), which provides a measure of a chimera’s overall kinetic
stability (Table 1). A Bayesian linear regression model was used
to correlate sequence fragments with the experimentally
measured AUC values (see Methods). This model resulted in
an excellent fit (r = 0.98, Figure 3A), and the block regression
parameters are given in Table 2.
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Figure 3. Arginase long-term stability. (A) Bayesian linear regression
model for AUC. Green and blue circles correspond to the parents and
chimeras (respectively) within the initial data set (r = 0.98 and p = 9 X
1077). Red stars represent the model’s predictions on the validation
set. (B) Correlation between isoelectric point and AUC for all
chimeras tested (r = —0.74 and p = 0.004).

Table 2. Regression Model Parameters®

parameter name log AUC
reference 7.76
B1P2 —-0.23
B2pP2 0.00
B3P2 0.39
B4P2 0.02
BsP2 0.07
B6P2 0.32
B7P2 —-0.26
B8P2 0.20

“The parameters specify how substituting parent 2 for parent 1 at a
given block changes the logarithm of the AUC. The most significant
substitution occurs at block 3, which is highlighted in bold.
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To validate the linear regression model we designed two
additional chimeric arginases (SCHEMA M and N) that were
predicted to have enhanced long-term stability. These
sequences were synthesized and characterized. The regression
model showed good predictive ability (Figure 3A), and both
sequences were more stable than 80% of the other chimeric
arginases.

From the regression analysis, the most stabilizing sequence
element was found to be block 3, where substituting hArgl for
hArgll is estimated to increase the AUC by almost 50%. Closer
inspection of the amino acid sequences for this important
chimera block revealed an abundance of charged residues.
Consistent with this observation, we found the estimated
isoelectric point”"** of the chimeras to show a striking negative
correlation (r = —0.74, p = 0.004) with the AUC, Figure 3B.
Thus, chimeras with greatest net negative charge under the
assay conditions (pH 7.4 and 37 °C) were the most stable,
while those closer to their isoelectric point exhibited faster
inactivation.

Metal Dependence of Stability. To test if metal binding
affected thermal unfolding, the melting temperature (T,,) for all
sequences was measured in the presence and absence of a
chelator (see Methods; Table 1). The melting temperatures
showed no significant correlation with long-term stability (r =
—0.30, p = 0.31). However, as expected the addition of EDTA
resulted in lower thermodynamic stability for all enzymes, with
an average decrease in Ty, values of 15 + S °C, in close
agreement with results of similar chelation experiments with
beef liver and Saccharomyces cerevisiae z;lrginases.m’24 This
highlights that bound Mn** stabilizes the correctly folded
state under thermal equilibrium conditions. To determine if
metal chelation is also a key factor in long-term kinetic stability
at thermodynamically stable conditions, we measured stability
in the presence of excess manganese (500 M MnCl,)
(AUC_ Mn in Table 1) at 37 °C, far below the average T,, of
74 + 6 °C. In accord with the denaturation data, excess
manganese was shown to increase long-term stability while
maintaining the overall trend in long-term stability as a function
of isoelectric point. These findings indicate that the enzymes
may be stabilized by excess charge as a function of pI and that
metal stabilizes the correctly folded form of the enzyme. As
activity is dependent on active-site bound metal, it is clear that
excess manganese will drive the equilibrium toward the metal-
bound (active), folded state and delay irreversible inactivation.
A possible mechanism of inactivation is depicted in Figure 4.
Here, arginase is irreversibly inactivated by loss of metal
followed by protein unfolding/aggregation.

Mn2t A Mn2+ B

# 1-Mn2*-Arginase #‘

|/

Aggregated/Unfolded Arginase

Arginase

2-Mn2*-Arginase

Figure 4. Schematic of potential arginase inactivation mechanisms.
(A) Loss of first equivalent of bound metal and decrease of some
activity. (B) Loss of second equivalent of bound metal and loss of all
activity. (C) Equilibrium between folded and unfolded states. (D)
Probably irreversible precipitation/aggregation.
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For all chimeric arginases, we performed Michaelis—Menten
kinetic measurements (see Methods) and calculated the
resulting catalytic efficiencies (k.,/Ky) (Table 1). Intriguingly,
the fold stabilization upon addition of 500 uM MnCl,
(AUCy,/AUC) displayed a linear relationship with catalytic
efficiency (r = 0.85, p = 0.02), Figure S. A similar trend has
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Figure 5. Correlation between fold change in long-term stability
(AUCy,/AUC) and catalytic efficiency (k/Ky), ¥ = 0.85 and p =
0.02.

been observed within a set of Cu** complexes.”® In that study,
the authors found the stability of a Cu®* complex to be
inversely related to its rate of glycine methyl ester hydrolysis,
indicating that more stable complexes lower the Lewis acidity of
the Cu®" ion. Likewise, arginases that bind Mn** more tightly
(i.e., that are not as dependent on an excess of Mn>" for long-
term activity) may have reduced Lewis acidity for coordinating
substrate or water ligands, and therefore diminished catalytic
efficiency.

Summary and Conclusions. The combination of
structure-guided SCHEMA recombination and an efficient
active learning procedure was used to generate a highly
informative set of catalytically active chimeric arginases. Site-
directed recombination libraries between low homology
parental genes provide unique data sets for probing
sequence—function relationships, offering distinct advantages
over sets of point mutants or naturally existing proteins. The
effects of point mutations are frequently too small to resolve
experimentally, while the large numbers of neutral mutations in
naturally existing proteins make it difficult to pinpoint the basis
of functional differences. In contrast, libraries of chimeric
proteins contain an intermediate level of sequence diversity,
and mutational changes are observed in multiple sequence
backgrounds.

The resulting set of chimeric human arginases displays
measurable variation, and the sequence basis of this variation
can be efficiently identified using linear regression. The high
level of sequence diversity within the hArg chimeras translates
into extraordinary functional diversity, as evidenced by the fact
that many of the measured properties were outside the range
displayed by the two parents (Table 1). For example,
recombination of hArgl and hArgll (pI = 6.8 and 5.7,
respectively) generated a set of functional chimeras with
isoelectric points ranging from 5.5 to 7.5. A linear regression
model helped identify a strong negative relationship between a
chimeric arginase’s isoelectric point and its long-term stability
(r = —0.74, p = 0.004). Since the long-term stability
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experiments were performed at physiological pH (7.4),
chimeras with the greatest net charge (low pI) displayed the
greatest stability. Similar relationships between a protein’s net
charge and its stability have been observed previously; for
example, a large survey across multiple protein families found
many proteins to be less stable near their isoelectric point.*®
Similarly, engineered ribonuclease variants show decreased
solubility and increased aggregation near their isoelectric
point.27’28

The relationships ferreted out in this study have practical
consequences for protein engineering. Arginase inactivation is
strongly linked to the loss of the metal center of arginase, as
activity as well as structural/thermal stability are metal-
dependent. Given the mechanism of inactivation depicted in
Figure 4, it might be further hypothesized that stability issues
could be resolved by (a) engineering proteins with increased
numbers of negative surface charges;29 (b) increasing the
concentration of metal (likely therapeutically intractable); or
(c) introducing a different metal that might lead to improved
binding and hence stability.

With respect to the latter hypothesis, it is noteworthy that we
have recently reported that Co**-substituted hArgl (Co-hArgl)
displays a dramatically reduced Ky; for L-Arg relative to the
native Mn**-containing enzyme and has a 12-fold increase in
k,./Ky. More importantly, Co-hArgl is significantly more stable
in serum, with an inactivation half-life of more than 30 h.>° The
improved pharmacological properties of Co-hArgl have been
shown to mediate potent tumor cytoxicity against numerous
cancer cell lines in vitro and to lead to the inhibition of
hepatocellular and pancreatic carcinomas in the mouse
xenograft model.*>*'

In the case of arginase replacement therapy to treat
hyperargininemia, it would be preferred to reduce elevated
serum L-Arg levels that range from 600 to 900 M to normal
reference values of 50—150 uM> rather than completely
eliminate the amino acid from the bloodstream. The ideal
enzyme for this application would have exceptional long-term
stability but not necessarily the increased efliciency that the Co-
substituted enzyme shows. The SCHEMA ] variant (blocks
11222112) identified in this study has a stable linear decay rate
of only 1% per hour and thus may hold promise for therapeutic
purposes. A simple kinetic model based on substrate hydrolysis
rates, inactivation rates, and L-Arg replenishment estimates
suggests that a single dose of SCHEMA J could maintain L-Arg
levels in hyperargininemia patients within the normal range for
5 days longer than a single dose of the more active but less
stable Co?*-loaded hArgL.>**

Such a treatment option is especially interesting for a number
of reasons. As the SCHEMA ] variant comprises two human
arginases, only the three chimeric junctions represent potential
new T-cell epitopes. Using software from the Immune Epitope
Database Analysis Resource,** >® we analyzed each of these
sequence junctions for any significant changes in predicted
epitope binding relative to the parent sequences for the eight
most common HLA alleles (see Methods). Calculations for the
HLA-DRB1%*15:01 allele for the second junction suggested a 3-
and 3.5-fold increase in binding affinity relative to hArgl and
hArgll, respectively; all other junctions and alleles did not show
a significant change relative to the parental sequences,
suggesting that SCHEMA ] is not likely to be highly
immunogenic. Moreover, since hArgl has been under
investigation as an anti-neoplastic agent, its serum retention
time has already been pharmacologically optimized via
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PEGylation, resulting in dose-dependent L-Arg depletion in rats
for up to days at a time,> and thus methods for further
extending the lifetime of the chimera may already exist.

Overall, the ability to design enzymes that are customized to
specific reaction conditions is of significant interest to
biomedical science. SCHEMA recombination coupled with an
active learning algorithm provided a diverse and efficient
sampling of the protein fitness landscape, revealing features that
could not be observed by traditional biochemical methods.
These data sets therefore provide a unique opportunity to
explore the relationships between protein sequence and protein
function, quickly yielding fundamental principles that can be
used to engineer highly optimized protein sequences.

B METHODS

Active Learning Algorithm. The active learning algorithm
consists of a two-step experimental design. The first step
involves finding an informative set of chimeras for a logistic
regression functional status model. Here, we would like to find
the set of sequences that maximize the mutual information
between the chosen set of chimeras S and the remainder of the

library L\S, which is given by
I(S; L\S) = H(L\S) — H(L\SIS)

where H(L\S) is the Shannon entropy of library L excluding
the chimeras in subset S, and H(L\SIS) is the entropy of the
same sequences after the chimeras in S have been observed. We
approximate the intractable entropy of the Bayesian logistic
regression model by replacing the logistic response with a
Gaussian likelihood. With this approximation, the properties of
collections of sequences and their relationships can be
represented with a multivariate Gaussian distribution, and
their Shannon entropy can be calculated from the determinant
of the covariance matrix. Gaussian mutual information is a
submodular set function®® and therefore can be efficiently
maximized using a greedy approximation algorithm.*" We used
a greedy algorithm to find a set of sequences S with maximized
mutual information. The functional status of the resulting
sequences was then used to train a Bayesian logistic regression
model that can predict the probability of functioning for all
chimeras in the library.

The second step of the algorithm consists of finding a highly
informative set of functional chimeric arginases. Here, we want
to find the set of chimeras S that maximize the expected value
of the mutual information

E[(S; I\)] = Y. |14\ [Je [] 1-2

AEP(S) c€EA  c€(S\A)

where the sum is over all subsets A in the power set of S, and p,
is the predicted probability of being functional for chimera ¢
from the logistic regression model. This objective is chosen to
simultaneously find sequences that are informative and have a
high probability of being functional, similar to the most
informative positive (MIP) active learning algorithm.42 Since
submodular functions are closed under positive linear
combinations, the expected value of the Gaussian mutual
information is also submodular, and therefore greedy max-
imization provides strong performance guarantees. The
covariance between sequences was calculated using the
chimera-block coding scheme described in the Regression
Analysis section (below). All experimental designs were
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performed with the Submodular Function Optimization Matlab
Toolbox. "

Gene Synthesis and Cloning. Genes encoding the
SCHEMA designed arginase chimeras were synthesized from
oligonucleotides as described previously.** In brief, long DNA
oligonucleotides (99 bases) were synthesized in-house and
assembled into two 560-base pair fragments using inside-out
PCR. These primary fragments were combined without
purification in a secondary overlap-extension reaction that
formed the final desired 1086-base pair product. Custom
software directed the assembly schemes and the efficient reuse
of oligonucleotides across multiple related sequences; 32-base
pair overlaps were designed between adjacent oligonucleotides
and a 3S5-base pair overlap was designed between the two
primary fragments. Genes were synthesized with an N-terminal
6x His tag followed by a tobacco etch virus protease cleavage
site and Ncol and EcoRI restriction sites as described
previously.®® These genes were cloned into a pET28a
expression vector, and the sequences were verified using
DNA sequencing.

Two variants (SCHEMA O and SCHEMA P) were not
designed by the algorithm but were chosen from preliminary
experiments on the basis of regions of sequence homology.
These chimeras were constructed by overlap extension PCR
and are included in this study as they contain SCHEMA
identified blocks from hArgl and hArgll

Expression and Purification. E.coli cells expressing
arginase variants were grown at 37 °C in minimal media to
an ODygy, of 0.8—1. Cells were collected by centrifugation,
resuspended in fresh minimal media containing 0.5 mM IPTG
and 100 uM MnSO,, and incubated for an additional 8—12 h at
37 °C with shaking. After protein expression, cells were
collected by centrifugation, lysed using a French pressure cell,
and centrifuged at 14,000g for 20 min at 4 °C. The clarified cell
lysate was applied to a nickel IMAC column and washed with
10—20 column volumes of IMAC buffer, and the purified
arginases were eluted with IMAC elution buffer (50 mM
NaPO,, 250 mM imidazole, 300 mM NaCl, pH 8). The
purified arginases were buffer exchanged several times into PBS,
10% glycerol, pH 7.4 using a 10,000 MWCO centrifugal filter
device (Amicon). Aliquots of purified arginase variants were
then flash frozen in liquid nitrogen and stored at —80 °C.

Enzyme Kinetics. Michaelis—Menten kinetics for L-Arg
hydrolysis were determined in 100 mM HEPES buffer at 37 °C,
pH 7.4 as previously described.*

Long-Term Stability. The long-term stability of the
arginase chimeras was measured in 100 mM HEPES buffer,
pH 7.4 at 37 °C, with or without 500 M MnCl,. Proteins were
diluted to 2 yM with 100 mM HEPES, pH 7.4 and placed at 37
°C. Aliquots of 30—50 uL were taken at different time points
(typically t = 0, 0.5, 3, 24, 48, and 72 h). The activity at each
time point was immediately measured using 1 mM L-Arg, as
described previously.’® The data were plotted as percent
activity as a function of time, and the area under this
inactivation curve (AUC) was calculated using Kaleidagraph.
The data was also fit to various models to calculate the rates of
decay of activity over time: (i) for biphasic decay: % Act =
(((100% — amp%)e™) + amp%)/(1 + e"Tos) where t =
time, amp = amplitude of the first decay, k = the rate of
exponential decay, hs= hill slope, and T = the half-life of the
sigmoidal decay; for sigmoidal decay: % Act = 100%/(1 +
e(Tos=)) and finally a single exponential decay model was
used for some enzymes as described in the results section.
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Thermal Stability. Arginase variants (20—40 zM) in PBS,
pH 7.4 with or without EDTA (10 mM final concentration)
were incubated in 96-well low-profile PCR plates (Fisher
Scientific, Rockford, IL) on ice for 30 min. SYPRO orange dye
(Life Technologies, Grand Island NY) was added into each well
immediately before the plate was placed in an RT (real-time)-
PCR machine (LightCycler 480, Roche, Mannheim Germany).
The temperature dependence of protein unfolding between 20
and 95 °C was measured in at least duplicate experiments. T,
values were derived from the monophasic melting curves
curves. To determine the circular dichroic spectra, a 6 uM
sample of hArgll in a 100 mM phosphate buffer, pH 7.4 was
analyzed on a Jasco J-815 CD spectropolarimeter. The change
in molar ellipticity at 222 nm (6,,,) was monitored from 25 to
90 °C. The fraction of denatured protein at each temperature
was calculated by the ratio of [60,,,]/[0,,,]4 where [60,,,]4 is the
molar ellipticity of the completely unfolded protein. The
resulting data were fit to a modified logistic equation to
determine the thermal transition midpoint.

Regression Analysis. For regression models, the inde-
pendent variable corresponded to chimera sequences and is
represented with a binary vector x, where x; indicates the parent
identity at block i. Because of our limited data, we used
Bayesian parameter estimation, which outperforms maximum
likelihood estimation for small data sets.

A chimera’s binary functional status was modeled with a
Bayesian logistic regression model, which contains a Bernoulli
likelihood function and a zero-mean, isotropic Gaussian prior
on coefficients.”> The resulting posterior distribution was
approximated using Laplace’s method and prior variance was
estimated from the data by maximizing the marginal likelihood
function. Using Newton’s method, we found the maximum a
posteriori (MAP) estimates for each chimera block’s con-
tribution to functionality. The probability that a chimera is
functional was estimated by applying the MAP parameter
estimates to the logistic model.

The logarithm of a chimera’s long-term stability (AUC) was
modeled with a Bayesian linear regression model, which
consists of a Gaussian likelihood function with a zero-mean,
isotropic Gaussian prior on coefficients.*® The measurement
noise and prior variance were estimated from the data by
maximizing the marginal likelihood function. With these
hyperparameters, MAP estimates for each chimera block’s
contribution to long-term stability were found in closed-form.

Immunogenicity Calculations. We used software from
the Immune Epitope Database (IEDB) (consensus method for
MHC(1I) binding)* to evaluate peptides spanning 15 residues
on either side of the hArgl and hArgll junctions of the
SCHEMA ] variant (blocks 11222112) to compare with the
corresponding sequences from the hArgl and hArglIl parents.
Using the predicted binding constants for the 8 most common
HLA alleles as reported previously’” we then calculated the
ratio of the predicted binding values for each (hArgl/SCHEMA
J and hArgll/SCHEMA J) peptide for each HLA allele to assess
any significant changes relative to both parents.
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